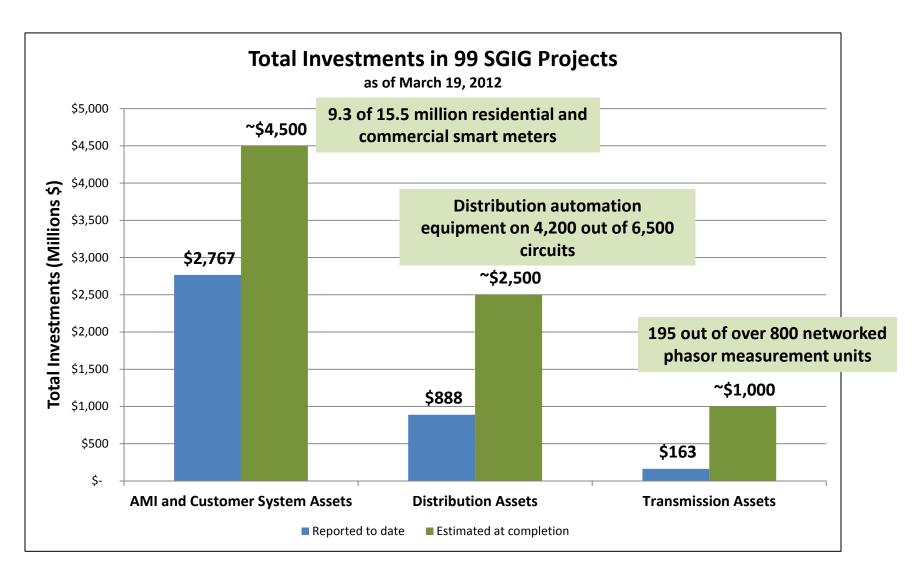
June 12, 2012


Office of Electricity
Delivery & Energy
Reliability

The Impact of Smart Grid Projects Funded by the Recovery Act of 2009

Joe Paladino
US Department of Energy
Electricity Advisory Committee Meeting, June 11 & 12, 2012

SGIG Deployment Status

Analytical Focus

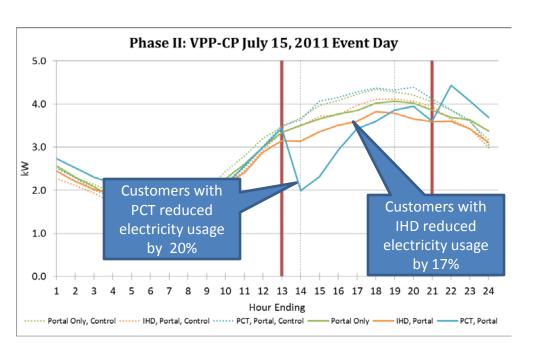
Advanced Metering Infrastructure Peak and Overall Demand Reduction (62 projects)

Operational Efficiency Improvements (60 projects)

Distribution Automation

Reliability Improvements (48 projects)

Efficiency Improvements (47 projects)


Transmission
System
Applications

Reliability and Efficiency Improvements (10 projects)

Pricing Pilot at Oklahoma Gas & Electric

OGE deployed TOU-CP and VPP-CP programs in Summer 2011, VPP-CP is highlighted here.

Price Level	Residential VPP- CP Price	Number of days in summer 2011 at each price level
Low and off- peak	4.5¢ per kWh	63
Standard	11.3¢ per kWh	25
High	23.0¢ per kWh	28
Critical	46.0¢ per kWh	6
Critical Event	46.0¢ per kWh	7 (included in the above)

Potentially Avoid Future Generation:

- Study results show a 1.3 kW reduction per customer is possible (max reduction: 1.97 KW)
- Hoping for 20% participation by Dec 2014
- Targets: Enroll ~ 40K customers in 2012 with 72MW peak reduction; 150K customers by Dec 2014 with 210 MW peak reduction (offsets a natural-gas fired peaking plant)
- Discontinue roll out of IHD in 2012

Operational Efficiency Improvements at Talquin Electric Cooperative

Background:

- For over 70 years, members submitted their own meter readings (highly inaccurate)
- Rolling trucks 6,000 times/year for routine service connection/reconnection and 9,000 times/year for non-payment problems (\$40-\$50/truck roll)
- Outage locations based on pattern of customer phone calls

TEC's SmartGrid Program:

- Deployed AMI to about 56,000 customers and upgraded 46 of 86 circuits with advanced capacitors for voltage control and outage management.
- With AMI, TEC avoided 8,800 truck rolls in 2011 for nonpayment problems saving more than \$350,000
- Expecting to avoid additional 5,500 truck rolls for routine service connections (savings of \$200,000/year)
- Expecting to reduce outage durations from more precise pinpointing of faults and dispatching of repair crews to exact locations without guesswork.

Technician changes out analog meter with a smart meter

Facts & Figures

Total Project Budget:

\$16,200,000

Federal Share:

\$ 8,100,000

Customers Served:

57,000

Service Area: 2,600 square miles spanning 4 counties in northern Florida

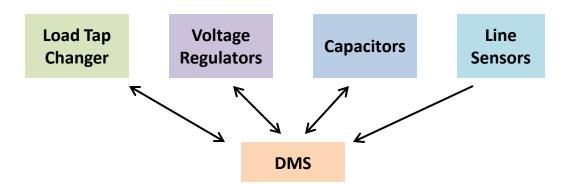
Reliability Improvements

One utility has installed 230 automated feeder switches on 75 circuits in an urban area. From Apr 1 – Sep 30 2011:

SAIDI improved 24%; average outage duration decreased from 72.3 minutes to 54.6 minutes (or by 17.7 minutes).

Estimated Avg. Customer Interruption Costs US 2008\$ by Customer Type and Duration								
Customer Type	Interruption Cost	Interruption Duration						
customer type	Summer Weekday	Momentary	30 mins	1 hr	4 hr	8 hr		
Large C&I	Cost Per Average kWh	\$173	\$38	\$25	\$18	\$14		
Small C&I	Cost Per Average kWh	\$2,401	\$556	\$373	\$307	\$2,173		
Residential	Cost Per Average kWh	\$21.6	\$4.4	\$2.6	\$1.3	\$0.9		

Sullivan J, Michael, 2009 Estimated Value of Service Reliability for Electric Utility Customers in the US, xxi


VOS Improvement $\Delta = \Delta$ SAIDI x Customers Served x Avg Load x VOS Coefficient

VOS Estimate for SAIDI Improvement on 75 feeders from Apr 1 to Sep 30 2011							
Customer Class	∆ SAIDI	Customers Served within a Class	Average Load (kW) Not Served	VOS Coefficient (\$/kWh)		ΔVOS	
Residential		107,390	2	\$	2.60	\$ 164,736	
Commercial	17.7 mins	8,261	20	\$ 37	73.00	\$ 18,179,477	
Industrial	(0.295 hrs)	2,360	200	\$ 2	25.00	\$ 3,481,325	
Total		118,011				\$ 21,825,537	

Conservation Voltage Reduction

Objective: Reduce energy consumption and peak load via operating at the low end of the ANSI C84.1 Range A Band (114V – 126V)

Near-real-time feedback loop enables optimized operation of these components. However, deployment strategies differ with respect to objectives and levels of sophistication.

Results Averaged across 11 Circuits	Initial Results	Potential Customer Savings (estimated for a 7 MW peak circuit with 53% load factor)				
Customer Energy Reduction	2.9%	943 MWh/year	\$75,440 (at \$.08/kWh)			
Peak Demand Reduction	3%	210 kW	Defer construction of peaking plants			

NOTE: Utilities and regulatory commissions will need to work together to establish appropriate recovery of fixed costs as consumption is reduced

Appendix

Analysis Focus Areas

Application of Advanced Metering Infrastructure

Investments in AMI are being made by 75% of the SGIG projects

Peak and Overall Demand Reduction

62 projects are pursuing

- 40 w/ pricing programs
- 25 w/ customer systems
- 21 w/ direct load control devices

J

Reducing requirements for generation capacity and energy (less fuel)

- Improved asset utilization
- Lower emissions (CO₂, NOx, SOx)
- Lower bills

Operational Efficiency Improvement

60 projects are pursuing

- 60 w/ automated meter reading
- 44 w/ voltage and power quality monitoring
- 51 w/ outage detection and notification
- 50 w/ tamper detection
- 48 w/ remote service switch

- Operations and maintenance (O&M) cost reductions
- Greater responsiveness to customer
- Lower outage duration
- Improved energy efficiency

Consumer Behavior Studies

	Siorra	Nevada					MN				Lake	
	Pacific		OG&F	MMLD	CVPS	VEC	Power*	CEIC	SMUD	DECo	land	Total
Rate Treatments	raciiic	rowei	OURL	IVIIVILD	CVF3	VLC	rowei	CLIC	SIVIOD	DLCO	iaiiu	IOtai
	•										•	2
TOU		•										3
СРР	•	•	•	•	•		•		•	•		8
CPR					•			•				2
VPP			•			•						2
Non-Rate Treatme	ents											
Education	•	•								•		3
Cust. Service						•						1
IHD	•	•	•		•	•	•	•	•	•		9
PCT	•	•	•					•		•		5
DLC								•				1
Features												
Bill Protection	•	•	•	•							•	4
Experimental Desi	gn											
Opt In	•	•	•	•	•	•	•		•	•	•	9
Opt Out								•	•	•	•	3
Within									•			1
Number of Particip	oants											
	9,509	6,853	3,196	500	3,735	6,440	4,025	5,000	97,480	5,400	3,000	145,138

[•] Sierra Pacific and Nevada Power are testing the effect of a technology package, including an IHD and a PCT

^{*} MN Power is also testing the difference between hourly energy feedback and daily energy feedback

Distribution Automation

DA investments are being made by over 50% of the SGIG projects

Distribution Reliability

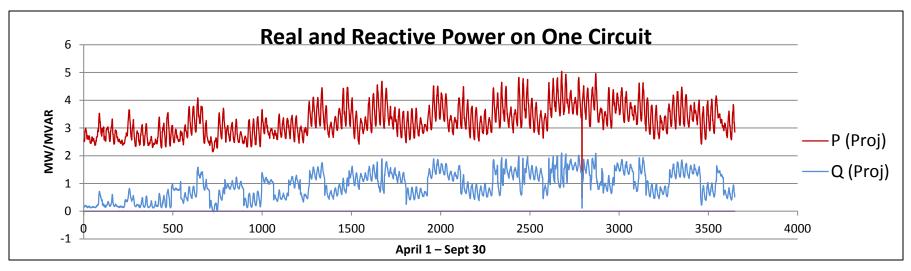
48 projects are pursuing distribution system reliability improvements

- 42 w/ automated feeder switches
- >6 w/ equipment monitoring
- 27 w/ DMS integration
- 21 w/ AMI integrated with OMS

Volt/VAR Control

47 projects are pursuing voltage/VAR control and optimization

- 35 w/ automated capacitor banks
- 32 w/ automated voltage regulators
- 22 w/ DMS integration


- SAIDI, SAIFI and CAIDI improvements
- O&M cost reductions

- Energy efficiency improvements
- O&M cost reductions

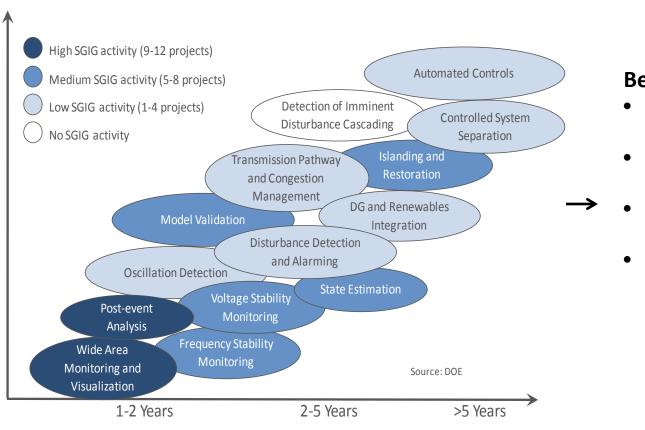
Measuring Line Losses

•

Energy Savings: Apr 1 – Sept 30

	Losses (MWh)	Diff. (%)
No Caps	355.3	
W/ Caps	340.3	4.2%

Observations (17 feeders):


- 1. Automated capacitors reduced losses by about 3%
- 2. Feeders with high reactive loads showed the greatest improvements in losses
- Sometimes the capacitor bank(s) overcompensated

Deployment Challenge

Application of Synchrophasor Technology

Investments in synchrophasor technology are being made by 10 SGIG projects

Benefits:

- Improved reliability and resiliency
- Improved asset utilization
- Reduced transmission congestion
- Integration of distributed generation and renewables